
JPL: CL#02-2877

Mission Data System

Framework Description

December 15, 2005
Version 2.5

Approved by:

Kenny Meyer , MDS Project Manager

Date

Jet Propulsion Laboratory
California Institute of Technology

The information contained in this document has been designated by the California Institute of Technology (Caltech) as
Technology and Software Publicly Available (TSPA). Copyright 2005. The copyrights and patents related to this technology are

owned by Caltech. United States Government sponsorship acknowledged.

Mission Data System Framework Description Page 3
Version 2.5

Mission Data System

Framework Description
This document provides an overall description of the MDS Framework technology. Since the
purpose is to provide a general reference for the frameworks, the descriptions are organized as
compendium. This document does not provide guidance for how the MDS technology should be
used.

This document includes 3 Sections:

Section 1 provides a summary of the framework and a brief description of each
framework package.

Section 2 provides a description for each individual package including package
functionality and relevant glossary items.

Section 3 provides an index of glossary terms and abbreviations.

NOTE: The frameworks are intended to describe functionality that is independent of a specific
programming language. Nonetheless, this document includes many references to C++ constructs
because the current MDS implementation is in C++. Implementations have been built in the
Java programming language as well. References to C++ constructs have been included here
because they address C++ specific issues, or because they describe capabilities that have not, as
yet, been generalized.

Mission Data System Framework Description Page 4
Version 2.5 ADAPTIVE Communication Environment (ACE)

1 Overview of Framework Packages and Layers
The MDS-based systems are built from a reusable set of core capabilities. The complete set
of these core capabilities is called a framework.

The framework is organized into a set of packages. Each package contains a set of related
functions created to satisfy a capability area. The packages are described in detail in Section
2, "Frameworks."

The packages are organized into layers. These layers are used to manage the dependencies
between code elements. Dependencies only flow down from higher layers to lower layers.
For example, level-1 packages may not depend on packages in levels 2, 3, 4 or 5. Level-3
packages may depend on packages in level 1, 2 or 3, but may not depend on packages in
levels 4, or 5. And so on.

The levels are organized roughly into types of functionality. This is, at best, a labeling of
convenience and should not be seen as a rigorous organizing principle.

Level 0: Operating
System Services

Externally provided standard libraries and interfaces
needed to communicate with target operating systems.

Level 1: Primitive
Services

Generic programming capabilities that are commonly
required for the development of embedded systems.

Level 2: Simple Services Low-level services needed for debugging, runtime
configuration and temporal programming

Level 3: Complex
Services

Generic database capabilities

Level 4: State Services Support services of the MDS state-based paradigm

Level 5:Application
Services

Capabilities needed for runtime construction, system
operations, system test, performance monitoring, and
generic visualization tools

The layer diagram in Figure 1 depicts six layers in the MDS core framework and the
packages in each layer. Each package is briefly described in Table 1, Brief description of
MDS Framework Packages .

Mission Data System Framework Description Page 5
Version 2.5 ADAPTIVE Communication Environment (ACE)

Figure 1: The MDS Framework is layered

OS Services
Level 0

Embedded Web
Server & Client

Data
Serialization

Adaptive Communication
Environment

C++ Standard
Library

Unit Testing Real Time
Operating System

Application Services
Level 5

State Services
Level 4

Complex Services
Level 3

Simple Services
Level 2

Primitive Services
Level 1

Naming
Services

Time
Mgmt

Data Management Policies

CCSDS File
Delivery Protocol

Event Log
Facility

Math Library
-6-DOF classes

Sequential
Estimation

MDS Standard
Utility classes
- Exceptions

Initialization
Finalization

Data Management and TransportValue History

State
-state variable -goal, xgoal
-state function -goal
-achiever network
-goal scheduler -elaborator

Hardware Adapter
-command
-measurement

Graph State Variable

State
Query

Data
Visualization

SimulationTask
Scheduler

Graph
Library

Physics Library

Images

Goal Elaboration
Language

MPE Coordination
-goal execution
-elaboration management

Perf

Assigned
IDs

Mission Data System Framework Description Page 6
Version 2.5 ADAPTIVE Communication Environment (ACE)

Table 1: Brief description of MDS Framework Packages

Package Description

1.

ACE Provides platform independent operating system primitives

for core patterns for concurrent communication software.
(ACE is an acronym for Adaptive Communication
Environment).

2.

Assigned Ids Provides an interface for importing externally assigned
identifiers into a deployment.

3.

CCSDS File Delivery
Protocol

Provides telecommunications protocols for reliable transport
of data products over space links. (CCSDS is an acronym of,
which spelled out is Consultative Committee for Space Data
Systems).

4.

C++ Standard Library Provides C++ language library functions.

5.

Data Management and
Transport

Organizes data storage and provides query mechanisms.
Provides abstract interfaces that must be supported by a
MDS-compliant transport service.

6.

Data Management Policies Provides a set of primitives for controlling data management
and transport.

7.

Data Serialization Provides interfaces for encoding and decoding data for
efficient and portable storage, retrieval, and transmission.

8.

Data Visualization Provides graphical displays of state queries.

9.

Embedded Web Server and
Client

Provides a thin web server following the HTTP 1.0 protocol.
Provides a thin web client following the HTTP 1.0 protocol.
Enables interaction with an embedded web server via the
HTTP protocol, in the same way that browsers talk to web
servers. Provides a lookup service for storing and retrieving
deployment addresses.

10.

Event Log Facility Provides a general logging mechanism for reporting
noteworthy events during mission operation. Provides
message filtering and transport interface.

11.

Goal Elaboration Language Provides a language for specifying the elaboration of goals
and other related high-level functions.

12.

Graph Provides the elements and algorithms need to build and use
graph data structures.

13.

Graph State Variable Provides a mechanism for defining relative states as pair-
wise directed relationships between frames in a graph.

14.

Hardware Adapter Provides base classes for commands and measurements.

Mission Data System Framework Description Page 7
Version 2.5 ADAPTIVE Communication Environment (ACE)

Package Description

15.

Images Provides base classes for images.

16.

Initialization and Finalization Provides a mechanism for ordering the initialization and

finalization objects.

17.

Math Provides common mathematical computations for MDS

frameworks, adaptations, and deployments, such as 6 Degree
of Freedom relationships.

18.

MDS Standard Utility Classes Provides utility functions that are used frequently throughout
the MDS frameworks.

19.

MPE Coordination Provides a goal execution engine and coordinates elaboration
and goal checking as part of the Mission Planning and
Execution (MPE) function.

20.

Naming Services Provides capability for storing values with an associated
name in a global registry.

21.

Performance Provides tools to gather and analyze performance metrics.

22.

Physics Provides a set of common physics objects and computations.

23.

Sequential Estimation Provides an application-programming interface (API) for
developing extended Kalman filters.

24.

Simulation Provides elements for building simulations of systems under
control.

25.

State Provides base classes to build state variables. Provides goal-
driven executable components that strive to achieve
executable goals. Provides mechanisms used to construct,
elaborate, and schedule temporal constraint and goal
networks.

26.

State Query Provides the functionality to query externally state and
measurement histories.

27.

Task Scheduler Provides mechanisms for building multi-threaded software
architectures that can have rate-groups and periodic
execution.

28.

Time Management Provides time representations and mechanisms for
manipulating them. Provides mechanisms for initialization
and management of time services.

29.

Unit Testing Provides a test harness for verifying partial adaptations of the
frameworks.

30.

Value History Provides abstract interfaces for time-tagged data containers
that hold state, command, and measurement histories.

Mission Data System Framework Description Page 8
Version 2.5 ADAPTIVE Communication Environment (ACE)

2 Frameworks
Each MDS Framework package provides a set of capabilities. This section includes an
overview and a list of functions and descriptions of those functions for each framework
package.

The following table provides a convenient list of the packages descriptions with page
numbers.

Package Page

Framework Package 1: ADAPTIVE Communication Environment (ACE)................ 9
Framework Package 2: Assigned IDs .. 10
Framework Package 3: CCSDS File Delivery Protocol (CFDP)............................... 11
Framework Package 4: C++ Standard Library .. 13
Framework Package 5: Data Management and Transport ... 14
Framework Package 6: Data Management Policies... 17
Framework Package 7: Data Serialization ... 18
Framework Package 8: Data Visualization .. 19
Framework Package 9: Embedded Web Server and Client 21
Framework Package 10: Event Logging Facility... 23
Framework Package 11: Goal Elaboration Language.. 25
Framework Package 12: Graph.. 27
Framework Package 13: Graph State Variable .. 29
Framework Package 14: Hardware Adapter .. 31
Framework Package 15: Image.. 33
Framework Package 16: Initialization and Finalization... 34
Framework Package 17: Math ... 36
Framework Package 18: MDS Standard Library ... 39
Framework Package 19: MPE Coordination ... 41
Framework Package 20: Naming Services .. 43
Framework Package 21: Performance ... 44
Framework Package 22: Physics.. 45
Framework Package 23: Sequential Estimation... 46
Framework Package 24: Simulation .. 50
Framework Package 25: State.. 52
Framework Package 26: State Query... 55
Framework Package 27: Task Scheduler ... 57
Framework Package 28: Time Management.. 58
Framework Package 29: Unit Testing.. 60
Framework Package 30: Value History ... 61

Mission Data System Framework Description Page 9
Version 2.5 ADAPTIVE Communication Environment (ACE)

Framework Package 1: ADAPTIVE Communication Environment (ACE)

Overview:

from ACE web-site (http://www.cs.wustl.edu/~schmidt/ACE.html).

"The ADAPTIVE Communication Environment (ACE) is a freely available, open-source
object-oriented (OO) framework that implements many core patterns for concurrent
communication software. ACE provides a rich set of reusable C++ wrapper facades and
framework components that perform common communication software tasks across a range
of OS platforms. The communication software tasks provided by ACE include event
demultiplexing and event handler dispatching, signal handling, service initialization,
interprocess communication, shared memory management, message routing, dynamic
(re)configuration of distributed services, concurrent execution and synchronization."

"ACE is targeted for developers of high-performance and real-time communication services
and applications. It simplifies the development of OO network applications and services that
utilize interprocess communication, event demultiplexing, explicit dynamic linking, and
concurrency. In addition, ACE automates system configuration and reconfiguration by
dynamically linking services into applications at run-time and executing these services in one
or more processes or threads."

"ACE is supported commercially by multiple companies using an open-source business
model. In addition, many members of the ACE development team are currently working on
building The ACE ORB (TAO)."

Description of basic functions:

see ACE web-site (http://www.cs.wustl.edu/~schmidt/ACE.html).

http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.cs.wustl.edu/~schmidt/ACE.html

Mission Data System Framework Description Page 10
Version 2.5 Assigned IDs

Framework Package 2: Assigned IDs

Overview:

This package provides an interface for importing externally assigned identifiers into a
deployment. These Ids can be used to establish common names across deployments.

Since the C++ runtime type system doesn't try to provide a portable identifier (other than an
inefficient class name string), and since we need identifiers that would be portable between
languages anyway, a separate mechanism must be provided for assigning these portable IDs.

In order to align different implementations of the same class, or to correlate implementations
with requirements it is much easier to manage the assignment database external to a C++
deployment, and generate the C++ or java code needed to establish the runtime associations
from the assignment database.

It is assumed that an external database such as the MDS state database can be used to manage
the set of identifiers, and that the database can then export a tabulation of the assignments in
a form that this interface can convert into a header file for consumption in the source code.

Description of basic functions:

Function Name

Description

Create assigned IDs Converts externally supplied IDs in the form of CSV
files into enums useable in adaptation code.

Glossary:

Term

Definition

Assigned ID Names for objects and classes that are useable across
deployments.

Mission Data System Framework Description Page 11
Version 2.5 CCSDS File Delivery Protocol (CFDP)

Framework Package 3: CCSDS File Delivery Protocol (CFDP)

Overview:

The CFDP package provides an implementation of standard-compliant, data-link protocols
for the reliable transport of data products between different systems over a
telecommunications network. It includes methods for sending products and receiving
products, and for controlling some operational parameters. The CFDP standard addresses
data transport for both space and terrestrial data networks.

CFDP is an acronym of an acronym that abbreviates Consultative Committee for Space Data
Systems File Delivery Protocol. That is, the primary protocol is the File Delivery Protocol
(FDP), and an international standards body, the Consultative Committee for Space Data
Systems (CCSDS), publishes its specifications. CCSDS communications protocols are
analogous to the Internet TCP/IP protocol suite, and in fact are in some cases extensions of
TCP/IP designed to work over radio links.

The file delivery protocol provides a standard method for delivering data products reliably
across a link even when the underlying transport medium is unreliable. For example, a radio
transmission can be interrupted by weather or misalignment of antennas or a variety of other
conditions and result in products that are only partly reconstructed on the receiving side. The
file delivery protocol provides an accounting mechanism on the receiving side that can detect
these missing pieces and then request that those pieces be resent. The sender side of the
system contains functionality to keep track of the pieces long enough to handle any
subsequent requests for retransmission. Eventually, when all the holes have been filled, the
receiver ends up with a complete product.

The CCSDS standards start at the radio level, and work up to the level where the received
and transmitted data streams are handed off to the application software. CCSDS compliant
software implements protocol that only deal with how the data bits are moved from place to
place, and not with what these data bits are, how they are created or what they do.

Note: this is a package that is not ported to MDS 2005.

Description of basic functions:

Function Name

Description

Send product Request that the given data product (file) be sent across
an associated space link using the CFDP protocol.

Receive product This method is a callback. When a product has been
received and completely reconstructed, this method will
be called to handle the product and decide what to do
with it.

Control CFDP This method encapsulates various control functions such
as cancel transaction for product and recover storage.

Mission Data System Framework Description Page 12
Version 2.5 CCSDS File Delivery Protocol (CFDP)

Glossary:

Term

Definition

CCSDS Consultative Committee for Space Data Systems

ISO International Standards Organization

TCP/IP Transmission Control Protocol/Internet Protocol (basic
communications standards of the Internet)

Mission Data System Framework Description Page 13
Version 2.5 C++ Standard Library

Framework Package 4: C++ Standard Library

Overview:

This package provides C++ language library functions as defined in the ISO standard
(www.iso.org).

Description of basic functions:

Please refer to the ISO standard available at www.iso.org

http://www.iso.org
http://www.iso.org

Mission Data System Framework Description Page 14
Version 2.5 Data Management and Transport

Framework Package 5: Data Management and Transport

Overview:

Data Management Catalog (or Catalog) package provides the persistent storage service, and
the database management services for State Variables and other data mediating components.
The Catalog also serves as the interface to the Data Transport subsystem.

Access to persistent storage is provided through an ordinary file system interface (provided
externally). The catalog acts as a configuration management wrapper layer around the
underlying file system, and provides a data Product interface that allows applications to
associate extended metadata with data objects, retrieve the metadata descriptions of data
objects, convert between in-memory and serialized storage formats, and search for products
based on metadata predicates.

Data Transport provides the abstract interfaces required of a MDS-compliant transport
service. These interfaces define the data transport service s ability to enqueue and dispatch
data products to and from a remote deployment. Although data transport mechanisms are not
directly provided here, some interfaces and policy support classes are. The MDS data
management and transport has been designed to move data products between deployments
using the CCSDS File Delivery Protocol or similar transport protocol that can transport files
with extended metadata. An adaptation's Transport Manager would be responsible for
coordinating transport sessions, and queuing for transport those products that it finds in the
catalog bearing metadata attributes that identify them as transportable. After the transport
manager has sent a product, it can change the product's attributes in the catalog to reflect its
changed status.

Description of basic functions:

Function Name

Description

Create collection Create a new collection with the given name in the given
collection.

Create container Create a new container collection with the given name in
the given collection if one doesn't already exist.

Find collection Find only one matching collection by name.

Get sender Accessor for the current product sender object.

Receive product This is a callback method. When a product has been
received and completely reconstructed, this method will
be called to handle the product and decide what to do
with it.

Report contents Reporting method for listing the contents of the named
collection.

Require collection Same as create collection except that it will succeed even
if the specified collection already exists.

Mission Data System Framework Description Page 15
Version 2.5 Data Management and Transport

Function Name

Description

Retrieve product This function is a request to find a previously submitted

product. The parameters to the function can include quite
complex conditions on the metadata of the products to be
retrieved. For example, a retrieve call might specify that
only products created from 11:45 to 12:15 am, with size
not more than 10kb, and appearing in certain collections
are to be retrieved.

Send product Request that the given data product be sent across an
associated link using the transport service.

Send sendable Issue a special query to find all the products that are
marked for transport but haven't been sent yet and put
them in the send queue.

Set sender Configure the catalog to use the given product sender to
support transport. The catalog accepts products for
transport, but it itself does not interface to
communications equipment, so it requires an object called
a sender to which it can give products destined for
transport.

Submit product Adds a product to a catalog collection. In executing this
function, the catalog makes a copy of the product, stores
it to persistent storage, and stores meta data about the
product in its internal data structures for later retrieval of
the product. If a product has certain special meta data
attributes, then this product is understood to be queued
for Transport.

Glossary:

Term

Definition

Accessor Function for retrieving an encapsulated variable.

Data catalog Provides the persistent storage service, and the database
management services for State Variables and other data
mediating components. The catalog also serves as the
interface to the Data Transport subsystem.

Data product (or
Product)

The unit of data visible in the Catalog or in its interfaces.
It's convenient to think of a product as a file with meta
data attributes, and in workstation configurations of
MDS, a product is stored as a file.

Data transport manager Responsible for coordinating transport sessions with
another deployment, and managing the transport of data
products.

Mission Data System Framework Description Page 16
Version 2.5 Data Management and Transport

Term

Definition

Product sender An object that provides an interface to communications

software and which can send products out on the
communications link view this interface.

Mission Data System Framework Description Page 17
Version 2.5 Data Management Policies

Framework Package 6: Data Management Policies

Overview:

The Data Management Policies package, or Policy, provides a set of primitives for
controlling data management and transport. For example, policies are can be used by value
histories to implement rules like: 'Every time 5 new state values have been created, put the
values in a product and submit the product for transport.'

Note: this is an MDS 2004 package that is not ported to MDS 2005.

Description of basic functions:

Function Name

Description

Policy actuator A user-defined type that implements rule. Each policy
actuator class has a condition and action. When a policy
actuator object is evaluated, the object tests the
condition if it is true, the action is executed.

Condition The part of a policy actuator object that is used to
determine if the policy's action should be executed. Users
of this package can define their own types of conditions,
and still use the policy actuator class to implement the
rule.

Action The part of a policy actuator object that is executed when
the conditions of the rule hold. Users of this package
define their own action types. Thus, the policy package
can be used to implement a large variety of rules.

Glossary:

Term

Definition

Policy actuator User-defined type that implements a rule for triggering
system activity.

Mission Data System Framework Description Page 18
Version 2.5 Data Serialization

Framework Package 7: Data Serialization

Overview:

The Data Serialization package provides functions needed to convert values to and from a
series of bytes for portable and efficient storage and transmission over a communications
link. This package also provides support for deserialization; i.e. the conversion of serialized
data back to its initial value. These conversions are done in a platform-independent way; i.e.
the value is preserved, even when platform-specific internal representations differ.

Description of basic functions:

Function Name

Description

Data input stream Functions that convert serialized simple values, such as
numbers and character strings, from a series of byte
values into the values themselves.

Data output stream Functions that convert simple values into series of bytes
in a platform-independent way.

Glossary:

Term

Definition

Serialization The conversion of a value from its internal representation
in C++ or Java into a series of byte values, which can
then be read by another piece of MDS software,
regardless of which type of compute it is running on.

Deserialization The opposite operation of serialization; the conversion of
a series of byte values to their original C++ or Java
values. For example, an 8-byte series may represent the
real number 8.0. And the same 8-byte series would be
translated, or deserialized, into the value 8.0 regardless of
the kind of computer running the software that is reading
the byte series.

Mission Data System Framework Description Page 19
Version 2.5 Data Visualization

Framework Package 8: Data Visualization

Overview:

The Visualization package provides rudimentary functions necessary to view the results of
state queries. The capabilities of this package, include the ability to make graphical plots of
state data, and to allow a user to configure a display based on values of the data. For
example, a user may want the field in which a temperature value is displayed to turn red if
the temperature goes above 180 degrees. This package also provides utility programs for
converting binary query results into CSV (comma separated value) files, or for examining
only a subset of the columns of data available in a binary result file.

Note: this is an MDS 2004 package that is not ported to MDS 2005.

Description of basic functions:

Function Name

Description

Plot results This functionality appears as a 'Plot' button in several of the
screens of the visualization applications. It causes a plot of the
state values in the selected data as functions of time. Each
different curve in the plot is given a different color, and there
is a legend describing the color assignment to curve as well as
unit information. The X-axis and Y-axis are labeled with unit
information (e.g., a single plot might have a temperature in
degrees Fahrenheit and a distance in meters. In this case, the
Y-axis would have both units in its label).

Snapshot results This function displays data not as a plot, but simply in a
tabular-like format in which each data value is displayed with
its own timestamp. These types of displays are normally used
with real-time query data - then the user sees individual fields
updated as fresh data is received. These kinds of displays can
be color-coded to bring special attention to certain values for
each field.

Export results This function allows a user (or batch program) to write out
binary query results into a CSV file, which can then be read
by many applications, e.g. Microsoft Excel.

Read binary results This function is used to allow applications to read in a
previously stored file containing binary query results. After
reading the data in, the user can plot, display, or export the
data.

Mission Data System Framework Description Page 20
Version 2.5 Data Visualization

Function Name

Description

Subset results This function, available either as a stand-alone application or

as a window under the main Visualization application (called
'Query Manager'), allows the user to pick a subset of the
columns of data available in a result for viewing or export.
Sometimes queries have many columns of data, and a plot of
them all is hardly decipherable, so it is very helpful to be able
to select just a few columns for viewing.

Mission Data System Framework Description Page 21
Version 2.5 Embedded Web Server and Client

Framework Package 9: Embedded Web Server and Client

Overview:

The Embedded Web Server, or EWS, provides a web server following the HTTP 1.0
protocol. This service receives HTTP requests via a TCP/IP port and dispatches them to other
software components via a registration table. These software components register themselves
at runtime with a text string corresponding to the resource string sent in the HTTP request.
The software components then format an HTML response to send back to the requestor.

The Embedded Web Client (or EWC) provides a web client following the HTTP 1.0
protocol. EWC enables interaction with an embedded web server in the same way that
browsers talk to web servers. This service sends HTTP requests via a TCP/IP port to a web
server. The service then parses the HTML response for the user of the client.

Also included in this package is the MDS Directory Access Protocol, or MDAP provides a
lookup service for storing and retrieving deployment addresses. MDAP servers run as a
separate process in a multi-deployment scenario. At startup, each deployment registers its
address with the MDAP server.

The package also provides an abstracted interface for a general purpose command interface
to allow deployments to be externally commanded.

Description of basic functions:

Function Name

Description

Do dispatch Dispatches a given HTTP request.

Http send Sends an HTTP request to a particular address.

Http send to server Sends an HTTP request to a server name looked up via
Mds Directory Acces Protocol (MDAP).

Register CGI Function Function called to register a software component for
dispatching HTTP requests. The registration is with a
string corresponding to the resource string passed in the
server HTTP request.

Add entry Adds a name/address pair to the MDAP database.

Retrieve entry Retrieves an address from the MDAP database given and
name.

Glossary:

Term

Definition

CGI Common Gateway Interface. A standard used by web
servers to communicate with other hosted processes.

EWC Embedded Web Client.

EWS Embedded Web Server.

Mission Data System Framework Description Page 22
Version 2.5 Embedded Web Server and Client

Term

Definition

HTTP Hyper Text Transfer Protocol.

HTML Hyper Text Markup Language.

MDAP MDS Directory Access Protocol.

Mission Data System Framework Description Page 23
Version 2.5 Event Logging Facility

Framework Package 10: Event Logging Facility

Overview:

The Event Logging Facility package, or ELF, provides a mechanism for recording messages
generated when the system is operating. The ELF record, or log, may be used later by human
operators to help diagnose problems or evaluate the performance.

An important feature of ELF is that the framework provides hooks to enable or suppress the
generation of individual event messages. It does this by requiring that event messages can
only be reported (published) by registered event Generators. Each generator identifies a
source for a particular kind of event with a particular severity, and provides the filtering
control apparatus for suppressing the reporting of that event.

ELF includes three sub packages:

An interface package for reporting events

A package that specializes the reporting package for initialization, finalization, or
other special cases.

A package for storing and transporting recorded messages. In particular, it provides
control for storing and filtering messages. It also provides a mechanism for specifying
which messages are generated.

Description of basic functions:

Function Name

Description

Generate message This is the generic function that can be called to generate
an event message. The argument contains the message.
The method will add a time tag to the event message and
will decide whether or not to save it based on internal
filtering options.

Set filters Set filtering options for a particular kind of event
message. Messages can be filtered to suppress on a
duration basis (permit messages to be generated no more
often than the given duration), interval basis (suppress all
but one of every N instances), or a severity basis
(suppress messages whose severity is less than X). A
given message type can also be disabled entirely.

Initialize Initialization options primarily include specification of a
class (method) for handling messages. Elf can be
configured to send messages to a file, to a console, or to a
handler event that will convert the event messages into
data products for transport to another MDS deployment.

Glossary:

Term

Definition

Mission Data System Framework Description Page 24
Version 2.5 Event Logging Facility

Term

Definition

ELF Error Logging facility

Mission Data System Framework Description Page 25
Version 2.5 Goal Elaboration Language

Framework Package 11: Goal Elaboration Language

Overview:

The Goal Elaboration Language package, or GEL, provides a textual language for specifying
goal networks and elaborations. We also refer to the processor for this language as GEL .

Note: this is an MDS 2004 package that is not ported to MDS 2005.

Description of basic functions:

Function Name

Description

Define goal Define a goal in GEL. A goal definition specifies such
things as the underlying state variable, state constraint,
and the time points of the goal, as well as any tactics for
maintaining the goal. These tactics may include other
sub-goals and temporal constraints. For example, other
values may be passed as parameters to be used inside of
tactics.

Make goal Create a new goal from a GEL goal definition. Any
number of goals can be created from a single goal
definition.

Elaborate goal Once a goal is created, it may be elaborated as a separate
step. Elaboration entails trying the tactics for maintaining
the goal, until one is found. Elaboration relies on package
GNET to do much of the work, Gel acting as an interface.

Define subnet A subnet is a network of goals and temporal constraints,
intended for insertion into the overall goal network. It is
similar to a tactic, the difference being that it does not
reside within some goal definition.

Insert subnet Insert a defined subnet into the network.

Make Xgoal Make an executable goal. Executable goals (Xgoals)
are imported from lower level code. When an Xgoal is
made, it is immediately inserted into the network, in
contrast to a goal, which does not affect the network until
it is elaborated.

Make time point Create a new time point, for example one to be used in
conjunction with one or more Xgoals.

Make temporal
constraint

Create a new temporal constraint, for example one to be
used in conjunction with Xgoals to constrain their
execution start or finish.

Mission Data System Framework Description Page 26
Version 2.5 Goal Elaboration Language

Function Name

Description

Define value In addition to the items mentioned above, many other

kinds of values can be defined in GEL, which provides
the computational capability of a general purpose
programming language.

Compute value GEL provides an expression language that can be used to
compute arbitrary arithmetic and symbolic values. The
syntax for this aspect is similar to conventional languages
such as Lisp or Scheme.

Define function GEL provides for defining arbitrary computational
functions, either in GEL itself or by binding to a function
defined in the implementation language, currently C++.
These functions are bound to names so as to be useable
within GEL.

Load file GEL can specify that files containing additional GEL
expressions are to be loaded and interpreted.

Trace Turn on or off a trace of GEL execution.

Glossary:

Term

Definition

Binding The association between a name and a value or function.

GEL Goal Elaboration Language.

Goal A constraint on a state variable that is to be maintained
between two time points.

Time point A symbolic point in time. The actual time represented by
a time point is determined during execution, and is
constrained by temporal constraints with other time
points.

Temporal constraint A constraint between two time points that specifies a
minimum and maximum delay time between those time
points.

Xgoal Executable goal.

Mission Data System Framework Description Page 27
Version 2.5 Graph

Framework Package 12: Graph

Overview:

The Graph package provides data structures and algorithms needed to represent and work
with discrete graphs. A discrete graph is a mathematical structure defined in terms of a finite
set of vertices and a finite set of edges. A graph edge defines a binary relationship between
two vertices. Such graphs are pervasive throughout computer science working with graphs
is a fundamental aspect of this field.1

The MDS Graph framework is a straightforward implementation of the concepts and
techniques described in the popular computer science textbook: Introduction to Algorithms
by Cormen, Leiserson and Rivest. There are two differences from the treatment of graphs in
this text: 1) caching and 2) membership graphs. The textbook focuses on algorithms but does
not address the computational issues involved in repeated uses of such algorithms. A simple
optimization consists in storing the results of the first execution of an algorithm and reusing
these results for subsequent requests for the same algorithm. A membership graph is a
specialized application of a discrete graph that tracks the membership of each vertex to
different groups of vertices.

There are three kinds of graphs in this package: directed, undirected, and equivalence. Each
kind is one of two varieties: a topological graph or a data graph. A topological graph
represents only the topology of vertex/edge connectivity. A data graph is a topological graph
with the addition of user-defined data for each vertex and edge.

Description of basic functions:

Function Name

Description

Graph editing Basic editing functions include adding & deleting vertices
& edges.

To optimize query performance, graphs maintain a query
cache. To edit a graph, it must first be "opened" for
editing (i.e., it can be edited but not queried). A graph
cannot be queried until it is "closed" to editing, at which
time the cache is reset.

Graph query Access properties of the graph (number of edges,
vertices). Browse the graph topology (vertices, edges,
paths through the graph).

Graph algorithms Topological sort, Depth-first search (nearly a verbatim
adaptation from Cormen et al).

1 Graph theory is part of the standard computer science curriculum in either advanced
undergraduate coursework or first year graduate studies in computer science.

Mission Data System Framework Description Page 28
Version 2.5 Graph

Glossary:

Term

Definition

Graph A data structure that has a collection of vertices and

edges. In a topological graph, vertices and edges are
identified with a unique number. A data graph is like a
topological graph but it associates a user-defined data
item to each vertex and to each edge.

Vertex An item that is part of the graph.

Edge An item that represents a relationship between two
vertices in a graph.

Mission Data System Framework Description Page 29
Version 2.5 Graph State Variable

Framework Package 13: Graph State Variable

Overview:

The Graph State Variable package, or GSV, provides a mechanism for defining relative
states as pair-wise directed relationships between nodes in a graph. GSVs are a general graph
based state representation that (1) can derive a state s value by combining relationships, (2)
produces different results for different derivation paths, and (3) handles changes to topology
and relationships between nodes.

Note: this is an MDS 2004 package that is not ported to MDS 2005.

Description of basic functions:

Function Name

Description

Close Completes the modification of a graph state variable s
topology.

GetRelationship Retrieves a value for the relationship between two nodes
in a graph state variable.

Open Prepares a graph state variable s topology for
modification.

RecoverRelationship Restores a value from persistent store for the direct
relationship between two nodes in a graph state variable.

UpdateChildren Adds constituent graph state variables to a composite
graph state variable as specified in a read/write parameter
file.

UpdateRelationship Stores a value for the direct relationship between two
nodes in a basis graph state variable.

Glossary:

Term

Definition

Frame A frame is point of reference.

GSV Graph State Variable.

Node A node in a graph state variable is an abstraction of a
frame.

Direct relationship A direct relationship within a graph state variable is
abstracted as an edge between two nodes, where the edge
references the value of the relationship between the two
frames represented by the two nodes.

Derived relationship A derived relationship within a graph state variable is a
relationship computed by concatenating the relationships
along a path that has 3 or more nodes.

Basis graph state A basis graph state variable is comprised of direct

Mission Data System Framework Description Page 30
Version 2.5 Graph State Variable

Term

Definition

variable relationships that are estimated locally.

Proxy graph state
variable

A proxy state variable is comprised of direct relationships
that are copied from a remote location.

Composite graph state
variable

A composite graph state variable is comprised of graph
state variables that are connected by sharing one or more
nodes.

Constituent graph state
variable

A constituent graph state variable is a graph state variable
that is an element of a composite graph state variable.

Mission Data System Framework Description Page 31
Version 2.5 Hardware Adapter

Framework Package 14: Hardware Adapter

Overview:

The Hardware Adapter package provides base classes for command and measurements.
These classes can be further specialized to suit given hardware devices.

A hardware adapter is an executable software component that provides uniform interfaces
to a hardware device or its simulation. Interfaces are defined for submission of commands to
actuators, querying of measurements from sensors, and policy-driven management of
command and measurement histories. A hardware adapter may extend the functionality of a
raw hardware device to provide a more convenient basis for monitoring and control, but it
must not hide information needed for fault protection.

There is no hardware adapter base class in the framework because there is no common
behavior. A hardware adapter adaptation must implement an interface to accept a command
of the subtype(s) it can accept. Similarly, it must implement an interface to provide a
measurement of the subtype(s) it generates and a command of the subtype(s) it can accept.
The hardware adapter adaptation must implement one or more value histories that store its
measurements and commands.

Note that this package is implemented as a sub-package within the state package.

Description of basic functions:

Function Name

Description

Submit command This method is invoked by a controller component to
submit a command. The method should do little more
than store the argument command in a value history, so
that the command can subsequently be enacted by the run
method. The command may supersede, amend, or
complement previously received commands.

Get command This method is invoked by an estimator component. It
returns a previously submitted command stored in a
hardware adapter's value history.

Get measurement This method is invoked by an estimator component. It
returns a measurement stored in a hardware adapter's
value history.

Glossary:

Term

Definition

Command A time-tagged outgoing directive to change one or more
physical states in the system under control. Issued by
controllers to hardware adapters. May be used by
estimators as evidence for estimating state variables.

Mission Data System Framework Description Page 32
Version 2.5 Hardware Adapter

Term

Definition

Measurement Provides time-tagged evidence about one or more

physical states in the system under control for a moment
in time. May be a science observation. Provided by a
hardware adapter. Used by estimators as evidence for
estimating state variables.

Hardware adapter Executable software component that provides uniform
interfaces to a hardware device or its simulation. Provides
a measurement and command interface between the
hardware of the system under control and the control
system. Keeps one or command and measurement value
histories.

Mission Data System Framework Description Page 33
Version 2.5 Image

Framework Package 15: Image

Overview:

The Image package provides base classes for creating, reading, writing, and accessing
elements of image data structures based on the measurement framework. This allows image
data to be manipulated as measurements produced by a camera hardware adapter, stored in a
value history, and stored and transported as data using the serialization and data management
framework services.

This package supports the JPLPic image format.

Description of basic functions:

Function Name

Description

Read image Creates an image by reading a file containing image data.

Write image Writes image data to a file

Mission Data System Framework Description Page 34
Version 2.5 Initialization and Finalization

Framework Package 16: Initialization and Finalization

Overview:

The Initialization and Finalization, or INIT, package provides the mechanism for managing
dependencies among singleton classes. A singleton class is a special class type that can have
one and only one class instance at runtime.

The singleton is one of the many design patterns documented in Design Patterns by Erich,
Gamma, Johnson and Vlissides. The Init framework is a substantial improvement over the
basic singleton pattern for rigorously handling initialization, finalization issues of singletons
in a way that provides both metrics on pattern usage, measures of testing complexity and a
capability for exhaustive testing. The Init framework is highly portable across C++ compilers
and platforms because it delays the initialization of all application-level singletons until the
C++ runtime system has been fully initialized (including exception handling facilities) and
forces the finalization of all application-level singletons to occur before the C++ runtime
system looses its exception handling facilities.

Description of basic functions:

Function Name

Description

Singleton pattern There are several variations of the basic pattern available
for regular C++ classes as well as for parametric classes
also known as C++ template classes.

Instance The framework includes an instance method for each
user-defined application of one of the singleton patterns.
This instance method performs runtime checks relative to
the proper initialization and ordering of the singleton.

Topological sort The Init framework sorts all singletons according to the
topological sorting of their partial dependencies. This is a
straight application of the Depth-First Search algorithm
from Introduction to Algorithms by Cormen, Leiserson,
Rivert. This algorithm is further instrumented to allow the
framework to generate all possible topological sortings of
the dependencies. This generative capability is essential
for rigorous verification and validation of software.

Pseudo-static initializer A pseudo-static initializer is an object that uses the
Resource Allocation Is Initialization principle to ensure

that all singletons will be initialized when the object is
constructed and that all singletons that have been
initialized will be finalized before the object is destroyed.

Mission Data System Framework Description Page 35
Version 2.5 Initialization and Finalization

Glossary:

Term

Definition

Singleton A C++ class type that has a static method (usually called

instance) that retrieves the unique instance of this class
type. See Design Patterns by Erich, Gamma, Johnson
and Vlissides for a complete description.

INIT Initialization package

Topological sort An algorithm from graph theory intended to find the total
order of a set of items that have only partial ordering
constraints among them.

Initialization &
finalization

All software that runs on hardware is subject to an
initialization phase before the software actually runs and a
finalization phase after the software has completed its
execution. The C++ standard provides weak guarantees
about this phase of a program execution. These
guarantees are insufficient to meet the needs of robust
software. INIT includes a solution that provides strong
guarantees about this process that either address critical
software requirements or greatly facilitate their
resolution.

Mission Data System Framework Description Page 36
Version 2.5 Math

Framework Package 17: Math

Overview:

The Math package provides common mathematical computations for MDS frameworks,
adaptations, and deployments. It includes object definitions and methods for standard library
limits class, time intervals, 3-vectors, quaternions, Euler angles, normal distributions,
polynomial functions, Taylor series, linear algebra algorithms, and math exceptions. The
MONTE project provided many of the functions required to implement 3-vectors,
quaternions, Euler angles, and linear algebra algorithms.

Description of basic functions:

Function Name

Description

Contains Returns true if the interval contains a member value.

Is superset of Returns true if this interval contains another interval.

Is contained by Returns true if this interval is a subinterval of another
interval.

Is equivalent to Returns true if this interval is equivalent to another
interval.

Has null intersection Returns true if this interval has no overlap with another
interval.

Unit Computes a unit vector (and time derivatives).

Transpose Transposes a matrix.

Subtract Computes the component-by-component difference of a
matrix or a vector.

Project Computes the projection of a vector onto another vector.

Orthogonal Computes the component of a vector that is orthogonal to
another vector.

Multiply Multiply all elements of a vector (or a matrix) by a scalar.

Max magnitude element

Computes the maximum magnitude (absolute value)
element of a vector.

Matrix vector multiply Multiply a matrix times a vector.

Matrix transposed vector
multiply

Multiply a matrix transposed times a vector.

Matrix matrix multiply Multiply a matrix times a matrix.

Matrix transposed matrix
multiply

Multiply a matrix transposed times a matrix.

Invert 3 Computes the inverse of a 3x3 matrix.

Mission Data System Framework Description Page 37
Version 2.5 Math

Function Name

Description

Magnitude Computes the vector magnitude (and time derivatives).

Identity Sets a square matrix equal to the identity matrix.

Dot Computes the vector dot product (and time derivatives).

Determinant 3 Computes the determinant of a 3x3 matrix.

Cross Computes a vector cross product (and time derivatives).

Combine Computes a linear combination of two vectors.

Angle Computes the angle (in radians) between two vectors.

Add Computes the component-by-component sum of 2 vectors
or 2 matrices.

Taylor Series Constructs a Taylor series function from a list of
coefficients.

Compute value of Taylor
series

Evaluates a Taylor series function at a point in time.

Compute nth derivative
of Taylor series

Evaluates a derivative of a Taylor series function at a
point in time.

Polynomial function Constructs a polynomial function from a list of
coefficients.

Compute value of
polynomial function

Evaluates a polynomial function at a point in time.

Get nth derivative of
polynomial function

Evaluates a derivative of a polynomial function at a point
in time.

Normal distribution Constructor for creating a normal distribution of a given
mean value and standard deviation.

Get probability of
normal distribution

Returns probability that a value is within a given range of
a normal distribution.

Get probability of
standard normal
distribution

Return probability that a value is within the range [low
high] in a standard normal distribution. This class
supports fast probability calculations in a standard normal
distribution via table look-up rather than via numeric
integration.

Get nz Return probability that a value lies in the range from -
infinity to v in a standard normal distribution.

Derivative Constructs a quaternion (and its derivative) corresponding
to a coordinate transformation obtained by rotating about
a coordinate axis at a specified angular rate; constructs a
quaternion (and its first and second derivatives)
corresponding to a coordinate transformation obtained by

Mission Data System Framework Description Page 38
Version 2.5 Math

Function Name

Description

rotating about a coordinate axis at a specified angular rate
and acceleration.

Quaternion Constructs a quaternion from real and imaginary parts;
from a series of three axes and Euler angles; from a 3-1-3
series of Euler angles (called an "MDS Constructor",
developed for EDL GNC applications); from a rotation
about a coordinate axis that is one of the purely imaginary
basis quaternions, i, j, or k.

Euler Constructs a 3-1-3 Euler angle rotation from 3 angles.

Mission Data System Framework Description Page 39
Version 2.5 MDS Standard Library

Framework Package 18: MDS Standard Library

Overview:

The MDS Standard Library, or MdsStd, package provides utility functions that are used
frequently throughout the MDS frameworks. MdsStd includes low-level utility classes and
interfaces that are not already provided by our operating-system wrapper, the language's
standard library, or the programming language itself. For example, smart pointers, file
manipulators, and case-insensitive string comparison. Much of the functionality of this
package is very similar to that found in several well-known C++ extension packages, such as
Loki or Boost.

Included in the MDS Standard library are exceptions, a standard mechanism for defining
exception types and creating exception variables. This package simply defines a base class
for all MDS exception (error) messages. Exception can be used directly, or extended in other
MDS classes to define all exceptions that can be generated at runtime from MDS code.

Having a common base class allows the exceptions generated at runtime to be more easily
identified as having come from MDS code (as opposed to some third-party software). The
MDS exception base class is derived from the standard library exception class and provides
no additional functionality.

Description of basic functions:

Function Name

Description

Caseless string This function makes it easy to compare two character
sequences without regard to the case of the letters in the
sequences.

Reference-counting
pointer

This function makes it easy for several different pieces of
software to have access to a value without having to have
their own copy of the value, and to automate releasing the
memory associated with the value when no more
references to it exist.

Holder-pointer This function automates the releasing of dynamically
allocated memory occupied by a variable when that
variable is no longer needed.

Context string This function makes it easy to read and manipulate
character strings, such as a path string, that imply a
hierarchy. Sub functions include breaking such a string
into its component pieces.

Stream tokenizer This function makes it easy to accept a stream of
characters and have it automatically broken into single
words.

Print formatter This function defines a simple interface for formatting
text reports.

Mission Data System Framework Description Page 40
Version 2.5 MDS Standard Library

Function Name

Description

Usage timer This functionality makes it possible to time the execution

of a function or code block.

Exception Base class for all MDS exceptions. Having a single Base
Class of all thrown objects in MDS simplifies exception
handling.

Glossary:

Term

Definition

MdsStd MDS Standard Library package

Path String A string that defines a folder in a computer's disk. For
example, the string
'C:\windows\system\Program Files'
is a path string, and it implies a hierarchy: Folder 'C'
contains folder 'windows', which in turn contains folder
'system', and so on.

Pointer In C++, a variable that contains the memory location, or
address, of another variable.

Class In C++ or Java, a user-defined type that incorporates
functions and data variables. A class may be extended to
define refinements of the original class, in which case the
extensions are said to be 'derived' from the original base
class.

Base class A class from which other classes are derived. Base class
are usually intended to establish the basic functionality or
role of an entire hierarchy of classes.

Mission Data System Framework Description Page 41
Version 2.5 MPE Coordination

Framework Package 19: MPE Coordination

Overview:

Provides a goal execution engine and coordinates elaboration and goal checking as part of the
Mission Planning and Execution (MPE) function. It contains the Xgoal checker, the
executive, and the elaboration manager.

The Xgoal checker is a runnable component which is responsible for monitoring the status of
Goals whose associated Xgoals are currently active (executing) in the active Xgoal Network.
Goals become active when any of their associated Xgoals begin execution (when their
opening Time point is fired). At that point, the Xgoal checker begins periodically evaluating
the status of each associated goal by way its Xgoal.

The executive is a runnable component responsible for managing the execution of the Xgoal
network. Specifically, this includes the task of dispatching new Xgoals to achievers by way
of their state variables as time points are "fired", and "firing" time points as time advances
and state variables change. It also promotes scheduled Xgoal networks to be executed.

The elaboration manager is a runnable component that runs elaborators. It checks the data
catalog for new goal net products from the ground and gives the executive a scheduled Xgoal
network to be promoted for execution.

Note that this package is implemented as a sub-package within the state package.

Description of basic functions:

Function Name

Description

Elaboration Expands a goal into a network of supporting sub-goals
needed to achieve the goal.

Scheduling Determines the execution order of goals on state variable
timelines so that all temporal and state constraints can be
met.

Promotion Installs a scheduled goal net to be executed.

Time point firing Fires time points when temporal and state constraints
(Xgoals) are met.

Xgoal dispatching Sends an Xgoal to a state variable for execution when the
Xgoal's starting time points fire.

Xgoal checking Verifies that executing Xgoals are still satisfiable and
triggers Xgoal failure when they are not.

Execute Xgoal network A executive interface to execute the currently promoted
Xgoal network.

Glossary:

Term

Definition

Fired time point A time point in an executing goal network whose pre- and

Mission Data System Framework Description Page 42
Version 2.5 MPE Coordination

Term

Definition

post-condition have been satisfied so that all incoming
goals can be completed and all outgoing goals can begin
executing.

Promotion Installing a scheduled goal net to be immediately
executed.

Mission Data System Framework Description Page 43
Version 2.5 Naming Services

Framework Package 20: Naming Services

Overview:

The Naming Services package is intended to provide mechanism by which components and
other runtime objects may be found and addressed within a deployment. This package
provides an easily accessible capability for storing values with an associated name in a global
registry. Once values are stores in a registry, they can be used by naming service functions.

This package also provides the ability to create 'contexts' or local regions. Each context
contains a local registry for the value-names pairs can be that allows the registration of
values under a name, but these associations are defined only within the context.

Description of basic functions:

Function Name

Description

Register object Creates an association in the registry between the given
object and a name. The name can be supplied by the
caller, or can be generated by this package. In either case,
the name must be unique. The object can be subsequently
looked up in the registry by name. The registration can be
specified to be in the global registry, or in a registry that
is contained within a context.

Deregister object Removes the association between the given object and its
name in the registry. The object must have previously
been registered using the 'register object' function.

Get object Given a name, finds and returns the object that is
registered under that name.

Create context Creates (defines) a new context, optionally as a sub-
context to an already-existing context.

Glossary:

Term

Definition

Context A scope or limit of definition for object registries. An
example is a folder in a computer disk: the folder
provides a context in which the names of the files in the
folder are defined. Filenames must be unique within a
single folder, but different folders may contain files of the
same name.

NOR Naming Service package

Object In object-oriented programming, an instance of a specific,
usually user-defined, class.

Object Registry A set of associations of a name to an object.

Mission Data System Framework Description Page 44
Version 2.5 Performance

Framework Package 21: Performance

Overview:

The Performance package provides tools to gather and analyze performance metrics. These
tools include heap size monitors, timers, and a tool for acquiring CPU instruction-level
measurements.

The Papi monitor provides controls to access hardware events, such as cache hits/misses etc.,
for performance monitoring. It uses the Performance Application Programming Interface
(PAPI) externally-provided library. PAPI provides unified interfaces to most major
microprocessor hardware. This is an optional package that is not compiled into a build by
default. See http://icl.cs.utk.edu/papi for more details on PAPI.

Description of basic functions:

Function Name

Description

start timer Start the timer

stop timer Stop the timer

generate timing report Produce a file that contains timing data and statistics for
each timer.

start heap monitor Sets a heap level

stop heap monitor Compute heap usage since the start heap function

generate heap usage
report

Produce a file that contains heap usage information and
statistics for each heap monitor.

http://icl.cs.utk.edu/papi

Mission Data System Framework Description Page 45
Version 2.5 Physics

Framework Package 22: Physics

Overview:

The Physics package provides a set of common physics objects and computations. It contains
object definitions for Cartesian, cylindrical, and geodetic coordinate systems and methods for
conversions between them. In addition, it contains representations and methods for positions
and rotations, and their first and second derivatives, and methods for rotating positions and
their derivatives. The Physics package contains object definitions and methods for ellipsoids
and physics exceptions. Finally, it contains the six degree-of-freedom (6DOF) transformation
class, and methods to apply, invert, combine, and propagate 6DOF transformations.

Description of basic functions:

Function Name

Description

6DOF Constructs a six degree-of freedom transformation from
either a rotation and acceleration objects; a quaternion,
angular velocity, angular acceleration, cartesian position,
cartesian velocity, and a cartesian acceleration; or a
quaternion, angular rate, angular acceleration, spherical
coordinates, spherical rate, and spherical acceleration.

6DOF Invert Constructs a six degree-of freedom transformation that is
the inverse transformation.

6DOF Concat Constructs a six degree-of freedom transformation that is
equivalent to successive applications of two different
transformations.

6DOF Propagate Constructs a six degree-of freedom transformation from
another by propagating the position and rotation in time
assuming a zero angular acceleration.

Cylindrical system to
Cartesian

Converts a cylindrical position, velocity, and acceleration
into Cartesian coordinates.

Cylindrical system from
Cartesian

Converts a Cartesian position, velocity, and acceleration
into cylindrical coordinates.

Geodetic system to
Cartesian

Converts a geodetic position, velocity, and acceleration
into Cartesian coordinates.

Geodetic system from
Cartesian

Converts a Cartesian position, velocity, and acceleration
into geodetic coordinates.

Spherical system to
Cartesian

Converts a spherical position, velocity, and acceleration
into Cartesian coordinates.

Spherical system from
Cartesian

Converts a Cartesian position, velocity, and acceleration
into spherical coordinates.

Rotation Constructs a rotation from a coordinate axis, angle, rate,
and acceleration; an axis (eigenvector of the rotation),

Mission Data System Framework Description Page 46
Version 2.5 Physics

Function Name

Description

angle of the coordinate rotation about that axis, rate, and
acceleration; a quaternion and its derivatives; a
quaternion, angular velocity and angular acceleration; a
3x3 rotation matrix and its first and second derivatives; a
sequence of Euler angles and their derivatives.

Is within Determines if one rotation is close to another.

Angle and axis and
derivatives

Computes the angle and axis (Eigen vector) of a rotation
and the axes and values of its derivatives.

Euler angles and
derivatives

Computes the angles and their first and second
derivatives for an Euler factorization corresponding to a
user specified sequence of coordinate axes.

Quaternion and
derivatives

Computes the quaternion associated with a rotation as
well as the quaternion's first and second derivatives

Propagate Computes the rotation propagated from a given rotation
assuming constant angular velocity.

Matrices Computes the rotation matrix and its first two derivatives
corresponding to a given rotation.

* - Rotation
concatenation and
application operator

Computes the rotation corresponding to two successive
rotations; or computes a rotated position, velocity, and
acceleration.

Invert Computes the multiplicative inverse of a rotation

Apply inverse Applies the inversion of a rotation to a position, velocity,
and acceleration.

Near point Determines the point on the surface of an ellipsoid that is
closest to a specified point.

Derivatives to normal Determines the unit normal and its first and second time
derivatives at a point with known velocity and
acceleration on the surface of an ellipsoid.

Base of normal Given a non-zero input vector and its first two time
derivatives, determines the points on the surface of the
ellipsoid whose outward pointing normals are parallel to
the input vector and its derivatives.

Glossary:

Term

Definition

6DOF Six degrees of freedom

Mission Data System Framework Description Page 47
Version 2.5 Sequential Estimation

Framework Package 23: Sequential Estimation

Overview:

The Sequential Estimation package provides an application programming interface (API) that
facilitates developing extended Kalman filters (an algorithm reported extensively in the open
literature since the early 1960 s) for real-time and post-processing applications. The APIs
provide a generic mechanism for estimating parameters, based on streams of measurement
data, measurement sets, and dynamics models.

In practice, this package is co-compiled with other user-supplied software modules that
mathematically compute the measurements and system dynamics of particular interest to the
user. The resulting product of the co-compilation is a new extended Kalman filter routine,
program, or application.

Note: this is a package that is not ported to MDS 2005.

Description of basic functions:

Function Name

Description

Add matrices This function adds two matrices together and returns the
sum.

Multiply matrices This function multiplies two matrices together, and
returns the product.

Convert quaternion to
Euler angles

Converts from a quaternion attitude representation to a
Euler angle attitude representation.

Convert Euler angles to
quaternion

Converts from a Euler angle attitude representation to a
quaternion attitude representation.

Propagate quaternion in
time

Given the attitude quaternion of a body at a start time,
computes the attitude quaternion of the same body at a
different time, by multiplying the time rate of change of
the body s attitude quaternion, by the change in time, via
standard integration steps.

Propagate covariance
matrix

Given the covariance matrix at a start time, computes the
covariance matrix at a different time, using appropriate
user-provided matrices containing the user s system
dynamics models, and uncertainty/assumed error in the
dynamics models.

Propagate state vector Given the state vector at a start time, computes the state
vector at a different time, using appropriate user-provided
matrices containing the user s system dynamics, in the
form of the first derivative in time of the state vector.

Mission Data System Framework Description Page 48
Version 2.5 Sequential Estimation

Function Name

Description

Kalman-update
covariance matrix

Given the covariance matrix at some time that a filter
measurement is made, representing the uncertainty in the
state vector at that time but without the information in the
filter measurement, this function computes the covariance
matrix (by standard Kalman update referenced in the
literature) representing the improved uncertainty after
applying the information in the filter measurement.

Kalman-update state
vector

Given the best estimated state vector at some time that a
filter measurement is made, this function applies the
standard Kalman update (referenced in the literature) to
make a linear improvement step to the estimated state
vector, based on the information in the filter
measurement. Value of the improvement step depends
on the user-supplied formulation for the mathematical
model of the filter measurement.

Glossary:

Term

Definition

Covariance matrix Associated uncertainty of each parameter in the state
vector, and correlated uncertainty, in the form of an n-by-
n matrix, where n is the dimensionality of the state vector.
An always-present by-product of any extended Kalman
filter.

Dynamics model The mathematical expression of the time evolution of a
system. For example, the mathematical expression for the
sum of the shear and normal forces acting on the wheels
of a vehicle, along with the weight of the vehicle, and the
wind force pushing on a vehicle, which gives the rate of
change of the velocity of a vehicle. A user-defined input
to any extended Kalman filter; therefore, not supplied by
the sequential estimation framework.

Euler angles Another standard representation of the attitude (pointing
direction) of a body in space, with the property of having
well-known, intuitive physical meaning, in terms of roll,
pitch, yaw about a set of axes. Euler angles have
problematic mathematical singularities (regions where
numerical values go to infinity, even though expected
physical value has not gone to infinity) when propagated
in time.

Matrix Standard representation of an ordered set of numerical
values, in an arrangement of n rows by m columns (n and
m integer, greater than zero). Standard rules of linear

Mission Data System Framework Description Page 49
Version 2.5 Sequential Estimation

Term

Definition

algebra apply to adding, subtracting, multiplying and
dividing matrices.

Filter Measurement Numerical value of the output of a sensor, said output
being mathematically represented as a function of the
state vector. This is not the same as the MDS
measurement, but would typically include the information
from one or more MDS measurements with the same time
tags. A user-defined input to any extended Kalman filter;
therefore, not supplied by the sequential estimation
framework.

Quaternion Standard representation of the attitude (pointing
direction) of a body in space, with mathematical
property of not having mathematical singularities when
propagated in time.

State vector Set of n parameters being estimated with the extended
Kalman filter defined by user. Main product of any
extended Kalman filter. Not a state variable, but may be
used to estimate one or more state variables.

Mission Data System Framework Description Page 50
Version 2.5 Simulation

Framework Package 24: Simulation

Overview:

The Simulation package provides tools that simplify the job of building simulation
components.

Note: this is an MDS 2004 package that is not ported to MDS 2005.

Description of basic functions:

Function Name

Description

Get data This function allows deployments to get the sensor data
from a simulated sensor device.

Command This function allows deployments to issue commands to
the simulated actuator device.

Run sim device This function allows the thread scheduler to execute a sim
device component for a cycle.

Set request This function allows the sim device via sim access bridge
to communicate with third-party software. It sends a
request to the third-party software.

Get response This function gets a response back from third-party
software to a sim device.

Translate request This function translates a request made by a set request
function call into the form required by third-party
software tool to communicate.

Translate response This function translates the response returned by third-
party software into an internal response data structure
needed by the get response command.

Glossary:

Term

Definition

Sim Truncated name for simulation.

Sim access bridge A Sim access bridge contains a discrete value history for
transactions, which record requests from and responses to
a hardware adapter in a different deployment. In addition
to providing this value history, a sim-access-bridge
component provides the communications channel with a
deployment, interpreting as needed commands and
queries to a sim-device component.

Mission Data System Framework Description Page 51
Version 2.5 Simulation

Term

Definition

Sim devices Sim devices are state generators, with the additional

capability to provide an interface for commanding and
data retrieval. Sim devices may either contain internal
device modeling or communicate with third-party
dynamic simulation tools in order to simulate discrete
device states.

State generator Analogous to remote estimators, they generate state
functions with which to update state variables. A state
generator may contain either internal dynamics modeling
or communicate with third-party dynamic simulation
tools in order to simulate continuous physical states.

Sim model bridge A sim model bridge is a component by which sim
communicates with external simulation models or third
party tools. This communication is performed using a
remote-procedure-call style interface.

Mission Data System Framework Description Page 52
Version 2.5 State

Framework Package 25: State

Overview:

The State package provides a mechanism for representing state variables and their values.
The concept of state knowledge is fundamental to the MDS architecture and refers to
what we know and how well we know it.

State knowledge encompasses information such as device operating modes, device health,
resource levels, attitude and trajectory, temperatures, pressures, etc, as well as environmental
states such as the motions of celestial bodies and solar flux. Such information is maintained
in state variables that serve, in a sense, as Grand Central Station because of the many
activities that use state information, including estimation, control, planning, and telemetry.

This package provides general-purpose classes and methods for representing, accessing, and
managing state knowledge. The three basic elements of state knowledge are state variables,
state functions, and state values. State variables provide uniform methods for querying and
updating state knowledge as well as managing the data stored within. State functions, which
describe how a state s estimated value varies with time, are used to update state variable
timelines. State values are returned by state variables in response to a query for a particular
instant of time. The classes for state functions and state values are abstract base classes that
users extend to represent data in a suitable form; thus, this package does not try to prescribe
user data formats.

All state variables support the following interfaces: goal execution , and goal scheduling .

This package provides achievers, goal-driven executable components that strive to achieve
executable goals. State controllers and state estimators are types of goal achievers; the former
strive to achieve a constraint on the value of a state variable and the latter strive to achieve a
goal on the quality of knowledge in a state variable.

All achievers support the following interfaces: runtime execution , goal execution , and
goal scheduling . In addition, controllers support the command submit interface, and

estimators support the state update interface.

This package also provides the framework used to build and execute temporal constraint and
goal networks, as well as elaboration and scheduling capabilities for these networks.

Description of basic functions:

Function Name

Description

Get state A state variable interface whereby a state variable returns
a state value for a specified instant in time. A legitimate
value is unknown , meaning that the state variable
currently contains no information for that instant in time.

State update A state variable interface whereby an estimator updates
the state value of a state variable for the time interval
specified in a supplied state function.

Mission Data System Framework Description Page 53
Version 2.5 State

Function Name

Description

Notify listener This interface notifies listeners that the state variable has

been updated.

Elaborate goal Create supporting goals as specified by a dependent goal.

Schedule goal network Produce Xgoal network for execution. Temporally

constrain conflicting goals so they do not overlap in time,
and merge consistent goals into Xgoals that do not
conflict. Order time points of affecting states with respect
to the time points of affected states, and compute
projections. Check Xgoals for achievability (i.e. that the
projections for all Xgoals are consistent with their
corresponding merged goals).

Goal scheduling
interfaces

Each state variable provides interfaces used during
scheduling of executable goals to: determine if a goal-to-
goal transition is achievable, project the effect of a goal
on the state, and determine if a goal is achievable. State
variables consult any achievers they have to perform
these operations.

Propagate network Calculate the temporal consistency of the temporal
constraint and goal network during network scheduling.
Calculate what time points can fire in a network during
goal network execution based on temporal constraints and
the current time.

Goal execution
interfaces

Each state variable provides interfaces used during goal
net execution: check if an Xgoal is ready to transition
given current state, start execution of the Xgoal, and if a
goals is still satisfiable. A state variable having achievers
will consult with them to determine if an Xgoal is ready
to transition, and will forward them an Xgoal to be
executed on their start Xgoal execution interface.

Run achiever Interface for the component scheduler to run an achiever
during goal execution.

Glossary:

Term

Definition

Goal A desired state over a particular temporal interval.

Temporal constraint The specification of a flexible temporal relationship
between time points in a network.

Temporal constraint
network

A directed graph whose edges are temporal constraints
and nodes are time points.

Mission Data System Framework Description Page 54
Version 2.5 State

Term

Definition

Goal network A directed graph whose edges are goals and temporal

constraints and whose nodes are time points.

Executable goal (Xgoal)

The result of merging goals during goal network
scheduling. Contains a projection.

Xgoal network A scheduled goal network that contains an Xgoal time
line for each state variable. An Xgoal network is
executable.

Projection A state prediction corresponding to an Xgoal.

State value The estimate for of a state variable at an instant in time.
The uncertainty in the estimate must be represented in
some form as part of the state value. Function get state
returns a state value.

State function A function of time, bounded by a start time and end time
that describes how a state varies over time, if at all.
Function update state takes a state function as an
argument.

State variable Provides uniform methods for querying and updating
state knowledge as well as managing the data stored
within.

Achiever A runnable estimator or a controller component that takes
action to change or maintain state as specified in Xgoals.

Estimator An achiever for a state variable that executes knowledge
goals to determine state.

Controller An achiever for a state variable that executes control
goals to change or maintain state.

Mission Data System Framework Description Page 55
Version 2.5 State Query

Framework Package 26: State Query

Overview:

The State Query package provides the functionality to query state and measurement histories.
This functionality includes the ability to submit queries from either text files or from a GUI
application, and to receive query results in batch or real-time modes. The package also
contains helper classes to make it easy to extend the query functionality for new kinds of
state-data types, and an application to help a user generate an adaptation of the query library
for a new kind of state data.

The package contains C++ and Java elements, and includes the functionality to communicate
between C++ and Java deployments.

Note: this is an MDS 2004 package that is not ported to MDS 2005.

Description of basic functions:

Function Name

Description

Create query Implemented by a Java GUI application window, this
function allows a human user to interactively build a
query, by selecting a time range, type of query, and a set
of states to be queried. This application can also store or
read queries in text form to/from a file.

Submit query This functionality allows the submission of a query for
processing. Submission can be done by a human user via
the query builder application, or by sending an Http
command to a batch-mode Java application, which in turn
locates the C++ deployments involved in the query and
sends each of them the query.

Execute query In C++ deployments, this function accepts a query from a
Java application via the Embedded Web Server (in the
form of an Http message). This function reads and
analyzes the query, searches for the state objects to be
queried, and retrieves the data. It then builds a response
message containing the query results and sends it back to
the requestor.

Generate queries This functionality automatically searches in a C++
deployment for queryable state and measurement
histories. It generates and executes a query for every one
found. This is especially useful in testing.

Search states This function is implemented as a Web command in a
C++ deployment. It searches the deployment to find all
queryable states, and returns the list of these to the
requestor. This function is used by the Java query builder
application to discover the list of available states from

Mission Data System Framework Description Page 56
Version 2.5 State Query

Function Name

Description

which the user can select.

Mission Data System Framework Description Page 57
Version 2.5 Task Scheduler

Framework Package 27: Task Scheduler

Overview:

The Task Scheduler framework package provides interfaces for multi-threaded software
applications. The fundamental aspect of this package is to define software interfaces to
support coordinated periodic execution.

Description of basic functions:

Function Name

Description

Periodic interface Interface for a software element that will be called
periodically

Background task
interface

Interface for a software element that is executed on
unused CPU resources. Includes a yield mechanism for
returning control back to the task scheduler.

Creating and Scheduling
Rate Groups

Mechanism for grouping periodic tasks into commonly
scheduled groups

Glossary:

Term

Definition

Deployment Any instance of a running system. An MDS deployment
is a running system built from the MDS frameworks.

Rate group A group of tasks that are scheduled to execute at the same
rate.

Software architecture Software architecture introduces a level of abstraction of
software with notions such as components. This
abstraction facilitates the description, modeling, design,
reuse, testing and validation of complex software.

Thread An operating system entity that can perform a
computation independently of other threads
computations in the system.

Mission Data System Framework Description Page 58
Version 2.5 Time Management

Framework Package 28: Time Management

Overview:

The Time Management package provides mechanisms for the initialization and management
of time services.

The Time Management package includes methods for defining time frames, and transforming
epochs from one time frame to another. It also includes functions for comparing, adding, and
subtracting epoch and duration values as well as functions for converting time values to and
from human-readable format.

Description of basic functions:

Function Name

Description

Initialize time This function establishes the current time, establishes the
database of time frames available (e.g. TAI - international
atomic time) and conversions between them, and
establishes the default time frame.

Get time This function allows a caller to get the current time, in the
default time frame in use.

Read time This function converts a human-readable time value into
an internal epoch value. The time frame may be specified
in the human-readable value, or if not, the default is used.

Write time This function outputs an internal epoch value to a human-
readable character string. The default format of the output
is:
YYYY-MM-DD:hh:mm:ss.sss<frame>, e.g.
2002-11-06:09:51:26.321TAI

Set time frame This function converts an epoch value from being
expressed in one time frame to being expressed in
another. If the conversion is not possible, the function
generates an exception.

Add epoch and duration Adds duration to an epoch and produces a new epoch.
Duration values also are expressed in a time frame, and so
this operation may require a conversion of frames before
doing the addition. An invalid frame conversion results in
a thrown exception.

Compare epochs This function allows the evaluation of logical expressions
such as 'e1 < e2' or 'e1 >= e2', where e1 and e2 are epoch
values.

Glossary:

Term

Definition

Mission Data System Framework Description Page 59
Version 2.5 Time Management

Term

Definition

Epoch An epoch epresents a fixed point in time.

Time frame A time frame represents a coordinate system for an epoch.
A time frame is generally unique to a particular clock,
though we define a few standard frames such as TAI and
UTC where the assumption is made that any clock
expressing time in that frame will provide some kind of
synchronization mechanism to keep it accurate with
respect to that frame. When dealing with time-dependent
control systems that can be widely distributed over huge
distances of space (and thus time), it is important to be
unambiguous about the time frames in which events are
measured and specified.

Mission Data System Framework Description Page 60
Version 2.5 Unit Testing

Framework Package 29: Unit Testing

Overview:

The Unit Testing package provides a test harness for verifying packages. It is externally
provided library called CppUnit. For more information about its capabilities, refer to
http://cppunit.sourceforge.net/cppunit-wiki.

Description of basic functions:

Function Name

Description

Please refer to http://cppunit.sourceforge.net/cppunit-wiki

http://cppunit.sourceforge.net/cppunit-wiki
http://cppunit.sourceforge.net/cppunit-wiki

Mission Data System Framework Description Page 61
Version 2.5 Value History

Framework Package 30: Value History

Overview:

The Value History package provides abstract interfaces for data containers that hold state,
command, measurement, and simulation data histories.

These containers hold items like state functions accessed through state variables,
measurements produced by hardware adapters, commands sent to hardware adapters, and
time-stamped data produced in simulation deployments. The items may be stored in time-
sorted containers. The Value History package provides insertion and retrieval interfaces on
these containers.

Value History containers contain objects of user-defined types. The only thing all of these
types have in common is that they are associated with a time, either a single point or a range.

As well as providing an abstract interface, the Value History package provides a few highly
optimized containers that meet the abstract interfaces:

Global variable: Implements a very simple value history for a single concrete type. Because
the item is stored by value it can't be abstract. This history container is appropriate for very
simple histories where only the single (latest) value is ever required

Two-item Pool: Two-item history that uses a pool and atomic smart pointers to maintain a
fast but thread safe container for homogeneous instances of the template state function class.
As a value history this container is intended for use in situations where the control algorithm
needs access to one most recent value plus one preserved value. Normally, the preserved
value is the state value preserved at the start of a new constraint. The container provides a
reference counted pointer index to each of the two nominal values along with a memory pool
for the actual values. The pool provides space for 2 * tsize actual value instances. The value
of tsize should be chosen to ensure thread safe atomic operations.

Note that this package is implemented as a sub-package within the state package.

Description of basic functions:

Function Name

Description

Update Abstract interface for adding an item to the history.

Query Abstract interface for accessing the history.

Glossary:

Term

Definition

Item A data element stored in a value history.

Mission Data System Framework Description Page 62
Version 2.5 Value History

3 Glossary Index
6DOF, 46
Accessor, 15
Achiever, 54
Assigned ID, 10
Base class, 40
Basis graph state variable, 29
Binding, 26
CCSDS, 12
CGI, 21
Class, 40
Command, 31
Composite graph state variable, 30
Constituent graph state variable, 30
Context, 43
Controller, 54
Covariance matrix, 48
Data catalog, 15
Data product, 15
Data transport manager, 15
Deployment, 57
Derived relationship, 29
Deserialization, 18
Direct relationship, 29
Dynamics model, 48
Edge, 28
ELF, 24
Epoch, 59
Estimator, 54
Euler angles, 48
EWC, 21
EWS, 21
Executable goal, 54
Filter Measurement, 49
Fired timepoint, 41
Frame, 29
GEL, 26
Goal, 26, 53
Goal network, 54
Graph, 28
GSV, 29
Hardware adapter, 32
HTML, 22
HTTP, 22
INIT, 35

Initialization & finalization, 35
ISO, 12
Item, 61
Matrix, 48
MDAP, 22
MdsStd, 40
Measurement, 32
Node, 29
NOR, 43
Object, 43
Object registry, 43
Path string, 40
Pointer, 40
Policy actuator, 17
Product, 15
Product sender, 16
Projection, 54
Promotion, 42
Proxy graph state variable, 30
Quaternion, 49
Rate group, 57
Serialization, 18
Sim, 50
Sim access bridge, 50
Sim devices, 51
Sim model bridge, 51
Singleton, 35
Software architecture, 57
State function, 54
State generator, 51
State value, 54
State variable, 54
State vector, 49
TCP/IP, 12
Temporal constraint, 26, 53
Temporal constraint network, 53
Thread, 57
Time frame, 59
Time point, 26
Topological sort, 35
Vertex, 28
Xgoal, 26, 54
Xgoal network, 54

